

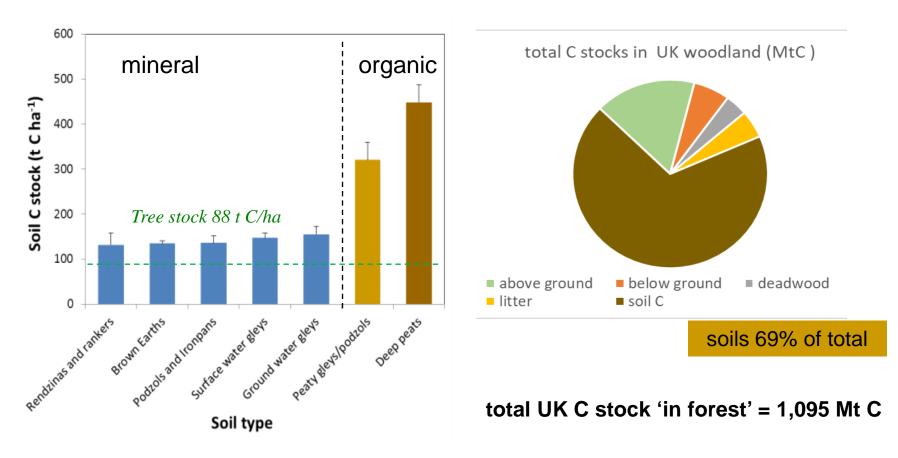
The importance of carbon sequestration rate considerations in area targets for afforestation: a strategic analysis for Scotland

Understanding forest carbon sequestration?

Mike Perks & Keith Matthews

- □ Keith Matthews, Doug Wardell-Johnson, Dave Miller, Robin Matthews
- Nuala Fitton, Ed Jones, Pete Smith
- □ Mike Perks, Steven Bathgate, Tim Randle, Duncan Ray

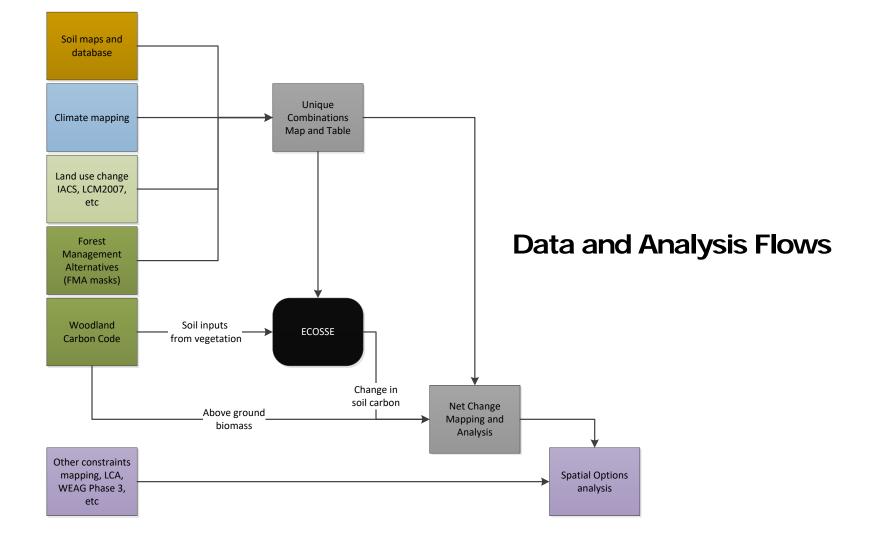
Carbon sequestration - a question of balance!



Crown copyright

Woodland Carbon stocks

Estimates from the BioSoil survey (2005-10) and Forestry Statistics 2020



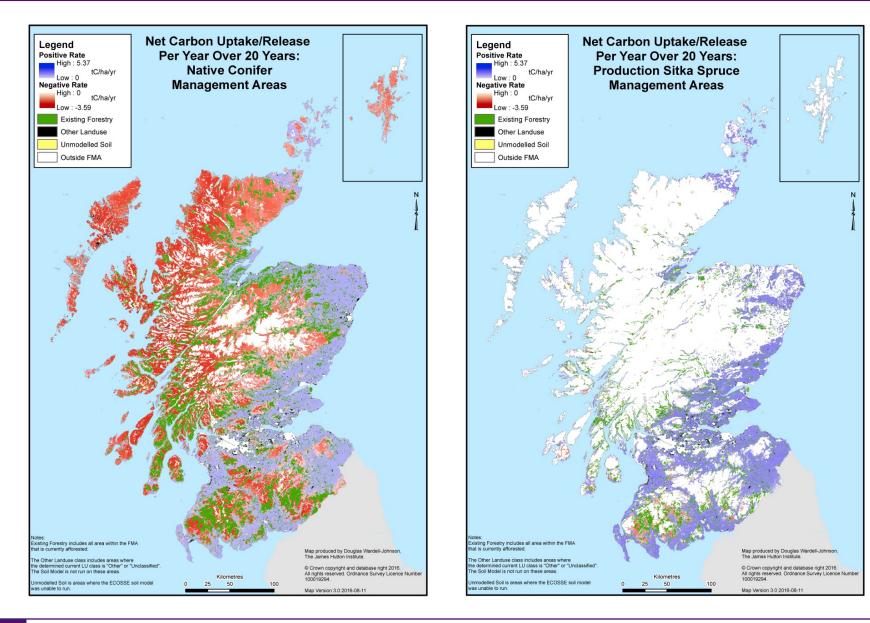
(Vanguelova et al., Soil Use & Man., 2013)

Updated from Morison et al., 2012. Understanding carbon and GHG balance of forests

Forest carbon management

'Forest Management Alternatives' Concept

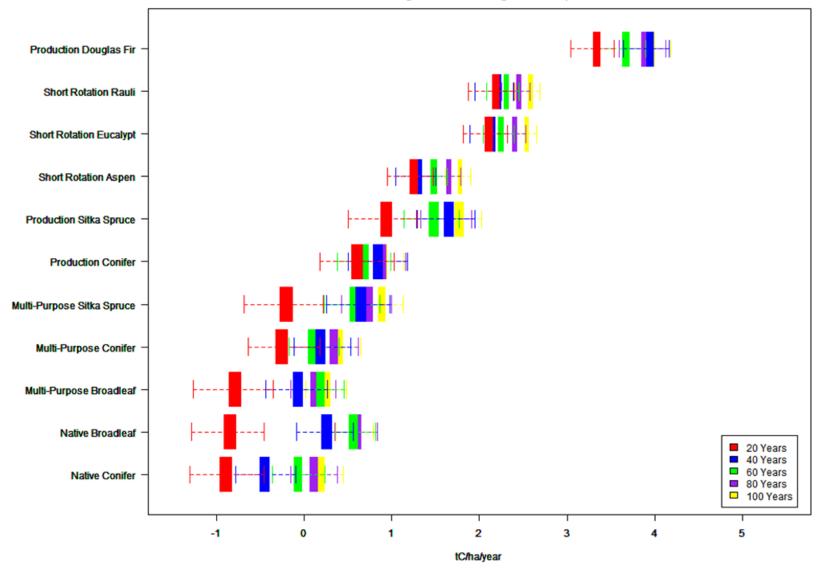
- 5 <u>"Wood Biomass"</u>
 - 4 "Intensive even aged"
 - 3 "Combined objective"
 - 2 <u>"Close-to-nature forestry"</u>
 - 1 "Forest nature reserve"


Crown copyright

ecological or social services

revenue

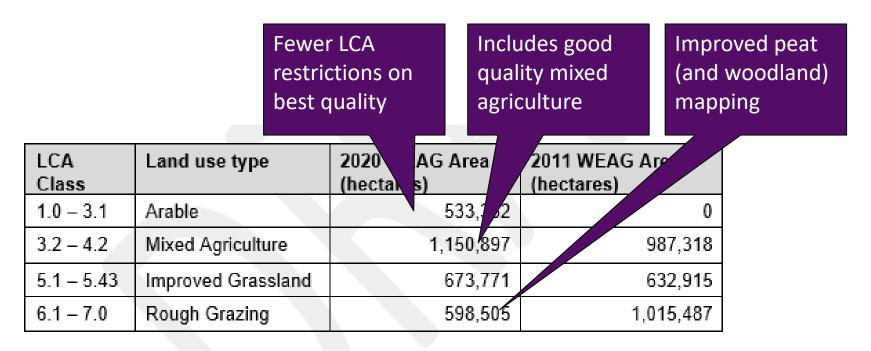
Forest carbon management



© Crown copyright

Forest carbon management

Distributions of average rates of change in C for permutations of 100,000 ha in each FMA


Crown copyright

WEAG 2020

2020 re-analysis of afforestation potential

- New land capability filters
- Includes new peat extent data
- Includes updated NFI extent

© Crown copyright

WEAG 2020

Forest Research

• 2020 re-analysis of afforestation potential

Area > 0 tC/ha/yr over 20 years					
FMA	Name	All	Semi- Natural	Grassland	Cropping
FMA1	Native Conifer	1,876,000	23,000	800,000	1,053,000
FMA2	Native Broadle af	1,916,000	84,000	785,000	1,047,000
FMA5	Multi-Purpose Conifer	2,553,000	729,000	786,000	1,038,000
FMA3	Multi-Purpose Broadleaf	1,810,000	5,000	764,000	1,041,000
FMA4	Multi-Purpose Sitka Spruce	2,140,000	444,000	722,000	974,000
FMA8	Production Conifer	2,132,000	466,000	698,000	968,000
FMA7	Production Sitka Spruce	2,147,000	473,000	709,000	965,000
FMA9	Short Rotation Aspen	1,789,000	305,000	596,000	888,000
FMA10	Short Rotation Rauli	1,502,000	215,000	517,000	770,000
FMA6	Production Douglas Fir	1,223,000	149,000	411,000	663,000

FMA	Name	All	Semi-Natural	Grassland	Cropping
FMA1	Native Conifer	862	-	-	862
FMA2	Native Broadleaf	-	-	-	-
FMA5	Multi-Purpose Conifer	1,517,000		479,000	1,038,000
FMA3	Multi-Purpose Broadleaf	-	-	-	-
FMA4	Multi-Purpose Sitka Spruce	956,000	-	-	956,000
FMA8	Production Conifer	1,645,000	1, 100	672,000	968,000
FMA7	Production Sitka Spruce	1,708,000	55,000	689,000	965,000
FMA9	Short Rotation Aspen	1,479,000	3,000	587,000	889,000
FMA10	Short Rotation Rauli	1,487,000	202,000	515,000	770,000
FMA6	Production Douglas Fir	1,217,000	144,000	410,000	663,000

Crown copyright

• 2020 re-analysis of afforestation potential

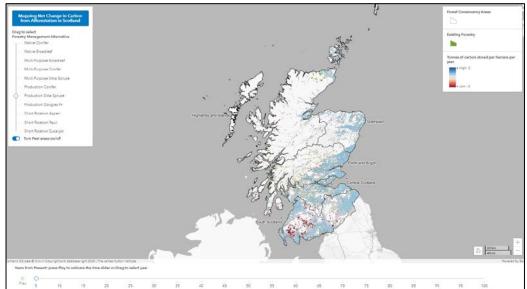
Planted area needed as % of TIMES assumptions > 1.05 tC/ha/yr						
FMA	Name		All	Semi - Natural	Grassland	Cropping
FMA1	Native Conifer		99% -		-	99%
FMA3	Multi-Purpose Broadleaf	-	-		-	-
FMA2	Native Broadleaf	-	-		-	-
FMA5	Multi-Purpose Conifer		81% -		97%	76%
FMA4	Multi-Purpose Sitka Spruce		85% -		-	85%
FMA8	Production Conifer		63%	95%	72%	58%
FMA7	Production Sitka Spruce		58%	97%	65%	53%
FMA9	Short Rotation Aspen		63%	93%	72%	58%
FMA10	Short Rotation Rauli		44%	64%	46%	40%
FMA6	Production Douglas Fir		31%	45%	34%	27%

New woodlands which achieve >1.05 tC ha⁻¹ y⁻¹ over the first 20 years, requires planting productive species on better quality mineral soils, bringing trees 'down the hill', maximising carbon capture.

- Better quality land delivers high carbon benefits from woodland and better economic return
- Integrated land use options (shelterbelts) particularly beneficial

LAND YIELD & PRODUCTIVITY	AGRICULTUTRAL LAND TYPE AGROFORESTRY TYPE [LCA CLASS]	PREDOMINANT AGROFORESTRY MANAGEMENT OPTION	LAND POTENTIAL TREE PRODUCTIVI Y
LOW	Lowest Quality Rough Grazing Silvopastoral: "Sheep & Trees" [LCA 7.0]	Upland wood pasture (single trees or clusters) Native Scots pine woodland & Low productivity native broadleaf (AFMA 1) (AFMA2)	Extensive upland Poor Do not plant peat>50cm
	Poor Quality Upland Silvopastoral: Rough Grazing "Sheep & Trees" [LCA 6.1 – 6.3]	Lowland wood pasture (single trees or clusters) Multipurpose Broadleaf & Multipurpose Conifer (AFMA 3) (AFMA4/5/7)	Extensive upland Moderate-Goo
	Improved Grassland Silvopastoral: "Livestock & Trees" [LCA 5.1 – 5.3]	Shelter Belts for Livestock: Multipurpose Broadleaf & Productive Conifer (AEMA 3) (AEMA 7/8)	Intensive upla Moderate-Ven Good
	Mixed agriculture Silvopastoral: "Livestock & Trees" [LCA 3.2 – 4.2]	Buffer Strips or Shelter Belts for Livestock: Productive Broadleaf & Productive Conifer (AEMA 3/9) (AEMA 6/7)	Lowland Very Good – Excellent
HIGH	Arable agriculture Silvoarable: "Crops & Trees" [LCA 2.0 – 3.1]	Rows and buffer strips for Arable Short Rotation Forestry, Productive conifer and broadleaves, silvo-arable planting (AFMA 9) (AFMA 7)	Lowland Very Good - Excellent

- Soil C stock is <u>large</u> minimise soil C losses
 - in existing woodlands management
 - in woodland expansion
- Cultivation usually increases soil C loss
- Drainage of wet soils increases C losses through increased decomposition and more dissolved C loss
- Need to strike appropriate balance between soil C loss and good establishment and growth (yield class, stems ha⁻¹ & wood density)
- Peaty soils are a particular concern
- Arable & rotational grassland soils typically have low C content
- Balancing other objectives at local/regional scales is key (biodiversity, access, wellbeing, economics)



Further details available from https://doi.org/10.1016/j.landusepol.2020.104690

& online

https://woodlandexpansion.hutton.ac.uk/

Email: mike.perks@forestreseach.gov.uk & keith.matthews@hutton.ac.uk

© Crown copyright